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Abstract

The Atmospheric Radiation Measurement Climate Research Facility collects, manages and dis-
tributes atmospheric measurements and measurement products to further research in atmospheric
radiation balance and cloud feedback processes. An ARM user often needs data about points (lo-
cations or times) or blocks (areas, volumes, time periods) different from those of an existing ARM
product. The ARM user has a change-of-support problem. ARM aims to help the user with this
problem through value-added products, or VAPs, to change the support of ARM data to match
the user’s need with minimal user effort.
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1. Introduction

The Atmospheric Radiation Measurement (ARM) Climate Research Facility collects, manages
and distributes atmospheric measurements and measurement products to further research in at-
mospheric radiation balance and cloud feedback processes. An ARM instrument samples a specific
volume at a specific rate, location and time. An ARM user, however, often needs data about points
(locations or times) or blocks (areas, volumes, time periods) different from those at which an ARM
variable has been observed or made available. The ARM user has a change-of-support problem.
ARM aims to help the user with this problem through value-added products, or VAPs, to change
the support of ARM data to match the users need with minimal user effort.

Gelfand (7) notes that the change of support problem is concerned with inference about the
values of a variable at points (locations or times) or blocks (areas, volumes, time periods) different
from those at which the variable has been observed. Change of support is about the prediction from
points to points, points to blocks, blocks to points, and blocks to blocks. Downscaling, upscaling,
disaggregation, aggregation and interpolation are about change of support.

Change of support techniques include both deterministic and stochastic approaches. From a
mathematics perspective this problem is the approximation of an unknown function from exact
observations of that function; the statistical view sees this as the prediction of an unknown function
from uncertain observations. Change-of-support techniques have varying degrees of complexity
and are based on Thiessen polygons, least squares or Lagrange polynomial interpolation, distance
weighting, splines and kriging (10; 9). Objective analysis (1; 8; 5) and ordinary kriging (6) are
examples of mathematical and statistical ”inverse distance weighted” solutions.
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Barnes (1) developed objective analysis to predict values on a regular grid from possibly irreg-
ularly sampled points. Koch (8) improved the usability of Barnes’ scheme with a meta-code to
help the user parameterize, evaluate and interpret an objective analysis. Caracena (5) extended
Barnes’ scheme to predict gridless values using a gaussian weighting kernel with improvements in
the predictions gained thru recursive application of the approximation. Barnes (2; 3; 4) reviewed
developments in objective analysis, investigated the accuracy of variants of the method, and offered
tuning pointers to improve predictions. These articles, and a few others, are a good place to start
to understand the requirements for an ARM VAP(s) to address change of support.

Non-parametric estimation offers ways of estimating an unknown function without the specifi-
cation of a parametric model of that function – a chief attraction of kernel smoothing and nonpara-
metric estimation. Kernel smoothing provides a simple approach to modeling structure without
the imposition of a possibly restrictive parametric model. Objective analysis is a very close kin
of kernel smoothing, or local polynomial regression estimation, from the general class of methods
for non-parametric estimation of functions. As in the case of nonparametric estimation, objective
analysis is called ”objective” (or ”nonparametric”) in that it requires no parameterized model of
the unknown function. Objective analysis, like nonparametric estimation, is not parameter-free,
featuring parameters such as the choice of the weighting function with its associated parameters
such as span, the distribution of prediction points...

Change of support may be aided, or abetted, by the variable type (temporal/spatial, contin-
uous/discrete, linear/non-linear scaling...) and data quality (accuracy, completeness, consistency
and resolution), the correlation (spatial, temporal, other) between values, the ARM sampling pro-
tocol and the user’s end use. For instance, a time-series variable may require a different estimator
than a spatially distributed variable.

2. ARM data and user change of support needs

There is not one change-of-support scheme that is appropriate for all cases. Descriptions of
exemplar user change-of-support requests are necessary to proceed.

3. Objective Analysis by weighted sums

Objective analysis was developed to interpolate a regularly gridded approximation from irreg-
ularly spaced observations in order to initialize numerical weather prediction models (5). Barnes
(1; 2; 3; 4) proposed a multi-pass objective scheme to approximate an unknown function by an
analytic function based on a Fourier integral representation. Barnes method begins with a grid
determined from the spatial distribution of observations. Barne’s first pass approximates the un-
known function at each grid point with a distance-weighted average of the observations. Following
passes replace the observations with successive residuals, i.e., the differences between the measure-
ments and the current approximations at the observed positions, in a similar weighted average to
improve the approximation. In this manner, Barne’s method is a successive corrections method.

3.1. Barnes’ scheme

Let f represent the unknown function and {xg}
Ng

g=1 the grid points determined from the spatial
distribution of observations. Suppose F (x) represents the approximating function of f at position
x. Let xi and fi denote the position and value of the ith observation, or sample, of f , with {fi}Ns

i=1
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and {xi}Ns
i=1 representing the sets of Ns observed positions and measurements. Then, Barne’s first

pass approximation F0 of f on the grid {xg}
Ng

gi=1 is {F0(xg)}
Ng

g=1 with

F0(xg) =

Ns∑
i=1

wi(xg, xi)fi
N(xg)

where

wi(xg, xi) =
1

4πκ
exp

(
‖xg − xi‖2

4κ

)
N(xg) =

Ns∑
i=1

wi

Barne’s kth pass approximation Fk of f is

Fk(xg) = Fk−1(xg) +

Ns∑
i=1

(fi − Fk−1(xi))
wi(xg, xi)

N(xg)

The name notwithstanding, objective analysis is controlled by a number of parameters: from κ
that sets the spread of the gaussian kernel to those parameters that set the size and density of the
interpolation grid to the number of successive corrections performed. Barnes (2; 3; 4) and Koch
(8) address parameter selection.

3.2. Caracena’s scheme

Cressman weighting function:

wi(x, a) =

{
a2−‖x−xi‖2
a2+‖x−xi‖2 if a ≥ ‖x− xi‖

0 if x 6= a ≥ ‖x− xi‖

Caracena weighting function:

wi(x, L) =
exp

(
−‖x−xi‖

2

L2

)
N(x)

=
exp

(
−
(
x−xi
L

)2)
N(x)

=
exp

(
−1

2

(
x−xi
σ

)2)
N(x)

=
exp

(
−1

2z
2
i

)
N(x)
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where

N(x) =

Ns∑
i=1

exp

(
−‖x− xi‖

2

L2

)
zi =

√
2L

Caracena multipass matrix scheme :

Fn(x) = wT (x, L)W−1(I − (I −W )n)f

= wT (x, L)((I + (I −W ) + (I −W )2 + ...+ (I −W )n−1)f

where

Wij = wj(xi, L)

W−1(I − (I −W )n) = W−1(I − (I −W ))(I + (I −W ) + (I −W )2 + ...+ (I −W )n−1

= (I + (I −W ) + (I −W )2 + ...+ (I −W )n−1

4. Inverse Distance Weighted Averaging

4.1. Inverse Distance Weighted Interpolation

Inverse distance weighted interpolation (IDW) is a common spatial interpolation method wherein
the estimated value D at location x is the weighted sum of the values {Di} observed at the loca-
tions {xi} in the neighborhood of x. IDW is a deterministic method in that the observed values
are assumed known with certainty. Of note, the IDW estimate of D at location xi is the observed
value Di. IDW assumes the similarity between the values at two locations is inversely proportional
to a function of the distance between the locations. Most often, the weights follow a power or
exponential distance-decay function of the distance dist(x, xi) between the locations x and xi. The
weights are normalized so that

∑
wi = 1. Assuming a power law distance-decay function,

D(x) =

{
Di if x = xi∑n

i=1wiDi if x 6= xi

where

wi =
zi∑n
i=1 zi

zi =
1

dist(x, xi)p

The deterministic IDW algorithm does not account for the randomness inherent in measure-
ments. The IDW scheme, however, can be readily extended to account for measurement uncer-
tainty.
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4.2. Inverse Distance Weighted Averaging

Inverse distance weighted averaging (IDWA) extends IDW to handle the random nature of
NSCRAD scores in a inverse distance weighted calculation. Suppose the measurements Di observed
at the locations xi are random draws from a χ2(k) probability distribution. Consider the inverse
distance weighted calculation

D(x) =

n∑
i=1

wiDi

where

wi =
zi∑n
i=1 zi

zi =
1

(dist(x, xi) +A)p
for A > 0

For values of the offset A >> dist(x, xi), zi approximately equals 1/Ap for all i. Hence, wi, for
all i, approximately equals 1/n where n is the number of neighbors of x. In this case, the IDWA
estimate D(x) is simply the mean of the n neighboring Di. When the offset A << dist(x, xi),
the IDWA calculation more closely resembles IDW. The constraint that the offset A > 0 avoids
dividing by 0 when calculating D(xi) where dist(xi, xi)

p = 0. zi. Here, the weights wi decrease
more quickly with distance from x as the exponent p increases. For p > 4, almost all the weight
is on the closest xi’s to x so that the IDWA estimate D(xi) about equals the NSCRAD value Di.
Similar weights may be obtain from various combinations of the offset A and exponent p. Figure
?? displays sets of weights, as curves, varying A with p fixed (panel a) and varying p with A fixed
(panel b). The actual set of weights will vary with the distance from the location x, the center
of the IDWA estimate. This variability may be observed in Figure ?? as the varying distances
between the points on a weight curve.
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